Differential evolution strategies for large-scale energy resource management in smart grids

back to our research

Differential evolution strategies for large-scale energy resource management in smart grids

15-19 July 2017

Proceedings of the Genetic and Evolutionary Computation Conference, July 15-19 2017

Authors: Fernando Lezama, Enrique Sucar, Joao Soares, Zita Vale, Enrique Munoz de Cote (PROWLER.io)

Abstract: Smart Grid (SG) technologies are leading the modifications of power grids worldwide. The Energy Resource Management (ERM) in SGs is a highly complex problem that needs to be efficiently addressed to maximize incomes while minimizing operational costs. Due to the nature of the problem, which includes mixed-integer variables and non-linear constraints, Evolutionary Algorithms (EA) are considered a good tool to find optimal and near-optimal solutions to large-scale problems. In this paper, we analyze the application of Differential Evolution (DE) to solve the large-scale ERM problem in SGs through extensive experimentation on a case study using a 33-Bus power network with high penetration of Distributed Energy Resources (DER) and Electric Vehicles (EVs), as well as advanced features such as energy stock exchanges and Demand Response (DR) programs. We analyze the impact of DE parameter setting on four state-of-the-art DE strategies. Moreover, DE strategies are compared with other well-known EAs and a deterministic approach based on MINLP. Results suggest that, even when DE strategies are very sensitive to the setting of their parameters, they can find better solutions than other EAs, and near-optimal solutions in acceptable times compared with an MINLP approach.

Differential Evolution

Evolutionary Algorithms

Multi-agent Systems


See paper